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Fluid dynamics is everywhere & its “pretty” turbulent

[1] Gopalakrishnan Meena, et al., PRE, 2018
[2] Gopalakrishnan Meena & Taira, J. Fluid Mech., 2021

Community structures in 
3D isotropic turbulence[2]

Reduce-order modeling of 
laminar flow over an airfoil[1]
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Contour plot of the perturbed vertical density 
gradient for 1/4th of the domain.

Grid resolution can get prohibitively expensive to simulate for 
practical fluid flow problems

• 3D stratified turbulence 
model for oceanographic 
flow[1]

• 22400×22400×5600 ≈
3×10!" > 2#! grid points

• Turbulence related projects: 
35-45% of 2023 OLCF 
Frontier allocation

Isosurface of scalar dissipation rate for 1/25th of 
the domain, constructed using 127×10! triangles.

[1] J. J. Riley, et al., J. Turbulence, 2023

Contour plots of the perturbed density after 
subsampling the domain.
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Quantum linear solvers have the potential to exponentially 
reduce cost of solving large problems

[1] Yepez, PRE, 2001
[2] Xu, Daley, Givi, Somma, AIAAJ, 2018

• Quantum computing applications to fluid flow problems:

• Lattice simulations: fluid motion modeled as the motion of discrete particles

• Continuum simulations: fluid motion modeled as a continuous field

• Linear flow problems

• Linear (ideal) flow problems[1-4] : N—S equations with assumptions

• Use Quantum Linear System Algorithms (QLSA)

• Classical: 𝑶(𝑵) (or higher for denser non-symmetric matrices)

• Quantum: 𝑶(𝒍𝒐𝒈(𝑵))

• Disadvantage: Enlarged solution space

[3] Bharadwaj & Sreenivasan, PNAS, 2023
[4] Gopalakrishnan Meena at al., PoF, 2024
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Benchmarking LuGo for QLSA circuits
• Benchmark on QLSA to calculate tridiagnal Toeplitz linear systems

• Analysis on Frontier & Perlmutter supercomputers with a two-hour time limitation

• LuGo achieves reduction for: (1) time to generate and run circuits, and (2) circuit depth

<latexit sha1_base64="DrMM1FDJ9WftqFV33Fu9vN3ydA8="></latexit>

Matrix
Size

Qubits
Standard QPE LuGo Reduction

Time (s) Gate Depth Time (s) Gate Depth Time Gate Depth
21 → 21 5 0.05 88 72 0.09 56 40 0.51→ 1.57→ 1.80→
22 → 22 7 0.16 375 343 0.11 151 119 1.48→ 2.48→ 2.88→
23 → 23 9 1.63 3,718 3,672 0.34 722 676 4.86→ 5.15→ 5.43→
24 → 24 11 17.37 38,633 38,571 1.34 4,388 4,326 12.95→ 8.80→ 8.92→
25 → 25 13 189.26 343,250 343,170 6.50 19,194 19,114 29.13→ 17.88→ 17.95→
26 → 26 15 1908.18 2,876,007 2,875,907 37.65 91,054 90,954 50.68→ 31.59→ 31.62→
27 → 27 17 Timeout Timeout Timeout 148.27 416,462 416,340 N/A N/A N/A
28 → 28 19 Timeout Timeout Timeout 643.42 1,866,991 1,866,845 N/A N/A N/A
29 → 29 21 Timeout Timeout Timeout 3287.47 8,257,810 8,257,638 N/A N/A N/A

This research used resources of the National Energy Research Scientific Computing Center 
(NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence 
Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.
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LuGo-based HHL enables scaling to larger flow problems

Results using classical simulators
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LuGo-based HHL solver better scales on superconducting & 
trapped-ion quantum hardware
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Due to the limitation of HHL algorithms, Variational Quantum 
Linear solver are considered as an alternative.

• Hybrid Quantum-Classical Approach:

• Practical for NISQ machine.

• More robust to quantum noise.

• Reduced circuit size and depth.

• The VQLS algorithm attempt to minimize the result of 1 − 𝑏|𝐴|𝑥(𝜃) " to estimate the closeness of 𝐴𝑥(𝜃) is 
to the vector |𝑏⟩.

• The classical side will assign a set of weight to the quantum computer to estimate the cost.
[1] Bravo-Prieto, C. et, al. Quantum, 2020.
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VQLS for generalized matrices – LCU decomposition

• To enable the generalized matrix input for VQLS, we use Linear Combination of Unitaries (LCU) decomposition.

• LCU decompose an arbitrary matrix to a combination of Pauli Matrices ∑) 𝑐)𝑈) 

• 𝑐) refers to the coefficient;

• 𝑈) refers to the corresponding Pauli-matrices.

• For the VQLS algorithm, the matrix is initialized by multiple cost circuits with each circuit containing a set of 
Pauli-gates.

•  The cost function is then obtained by adding up cost of all circuits multiply with corresponded coefficients. 
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VQLS for generalized matrices
• We constructed relatively simple matrices to test the scalability of the algorithm with LCU decomposition. 

• For simplicity, we constructed the matrix with only three Pauli terms 

• with coefficient of 1, 0.2, 0.2 corresponds to Pauli-Z, and two Pauli-X terms.

• The matrix is now: 

1 0
0 1

0.4 0
0 0

0.4 0
0 0

1 0
0 1

 for 2-qubit matrix. 

• The vector input is [1,1, … , 1]*.

Validating the VQLS implementation on a tridiagonal Toeplitz system with matrix size 4 × 4. 
(Top) The convergence of the optimization process and (bottom) the comparison of 

probabilities of the states from the classical and VQLS methods.
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Scaling simple matrix

• For a matrix decomposition with a simple LCU decomposition method, we successfully scale the algorithm 
to matrix size of 2+×2+ with high fidelity over 99.9% on quantum simulator.

Effect of problem size on fidelity demonstrated for a tridiagonal Toeplitz 
system.
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Complexity involved with CFD matrices
• Not with dimension of 2,×2, – pad to the nearest square matrix of 2,×2,.

• Large condition numbers – VQLS can handle input matrix with ill-conditioned matrices where HHL cannot. 

• An increased number of LCU terms for complex – more quantum circuits required for each cost computation.

• Post-quantum process – from quantum state to actual state.

• Complex result state |𝑥⟩ that is difficult to express – more complex quantum ansatz for expressibility.

Comparing the coefficients of the LCU decomposition of the system 
matrices for the tridiagonal Toeplitz system and Hele–Shaw flow on the 
complex plane. Both problems are chosen to have a system size of 24
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Ansatz complexity
• Due to the complexity of real-world problems with the possible solution |𝑥⟩, ansatz with low depth and 

complexity might fail to converge.

• We are considering multiple different types of quantum ansatz for efficient convergence and high fidelity.

[1] SukinSim, et al., Adv. QuantumTechnol. 2019

Ansatz expressibility, entanglement, and number of parameters explanations, and preliminary results obtained of the performance achieved 
on tridiagnal Toeplitz and Hele-Shaw experiments conducted using different quantum ansatz. Comparing effect of various ansatz on the 

fidelity for the tridiagonal Toeplitz system and Hele–Shaw flow. Both problems are chosen to have a system size of 8.
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Optimizer needed and large number of circuits

• To minimize the cost function with less optimization steps, we used gradient and gradient-free optimizers to 
compare the number of steps and minimum cost function achieved. 

• Currently, gradient-based optimizer ‘Adam’ and ‘NAdam’ optimizer in Pytorch outperformed gradient-free 
optimizer with lowest steps and minimum cost value obtained.

• Due to many steps and decomposed Pauli terms because of LCU decomposition, large number of circuits are 
required to perform the optimization algorithm.

(a) ‘NAdam’ (gradient-based) (b) COBYLA (gradient-free) (c) L-BFGS-B

Learning curve by selecting different optimizer for a sample LCU decomposition matrix input using gradient and gradient-free approach. 
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Distributed framework

• To cope with HPC-Quantum stack and release the pressure of large amount of quantum circuits for VQLS, we 
embedded QFW framework to enable Quantum-HPC 

Allocation strategies to support hybrid QC/HPC applications. Illustration of hybrid QC/HPC application resource management.



2323

Challenges

VQLS for 
generalized 
matrices

Scaling simple 
matrix

Complexity 
involved with CFD 
matrices

Ansatz complexity

Optimizer needed Large # circuits Distributed 
framework

Batched circuit 
submission



24

Batched circuit submission

• To reduce the interaction between classical and quantum computer interaction and maximize the quantum 
hardware qubit capacity, we enabled batched circuit input for a quantum computer/simulator.

Batched VQLS circuit a batched submission of three circuits. Three cost values will be return by one execution
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Conclusion and Future Works

• In the future, we intend to 

• perform more detailed analysis of quantum ansatz with respect to expressibility, weights and 
entanglement capability;

• Reduce the total number of circuits required for VQLS.
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