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Fluid dynamics is everywhere & its “pretty’
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Reduce-order modeling of Community structures in
laminar flow over an airfoill'l 3D isotropic turbulencel?

%OAK RIDGE [1] Gopalakrishnan Meena, et al., PRE, 2018
National Laboratory [2] Gopalakrishnan Meena & Taira, J. Fluid Mech., 2021



Grid resolution can get prohibitively expensive to simulate for
practical fluid flow problem

+ 3D stratified turbulence
model for oceanographic
flowl

e 22400%22400%x5600 =
3x10'2 > 241 grid points

» Turbulence related projects:
35-45% of 2023 OLCF
Frontier allocation

OAK RIDGE ; Isosurface of scalar dissipation rate for 1/25t of
%0/ - 1] J. J. Riley, et al., J. Turbulence, 2023 . P3 /
National Laboratory 0] y the domain, constructed using 127x10° triangles.



Quantum linear solvers have the potential to exponentially
reduce cost of solving large problems

* Quantum computing applications to fluid flow problems:
 Lattice simulations: fluid motion modeled as the motion of discrete particles

* Continuum simulations: fluid motion modeled as a continuous field

» Linear flow problems
« Linear (ideal) flow problemsl'4 : N—S equations with assumptions
« Use Quantum Linear System Algorithms (QLSA)
+ Classical: O(N) (or higher for denser non-symmetric matrices)
« Quantum: 0(log(N))

» Disadvantage: Enlarged solution space

OAKR [1] Yepez, PRE, 2001 [3] Bharadwaj & Sreenivasan, PNAS, 2023
% AK RIDGE [2] Xu, Daley, Givi, Somma, AIAAJ, 2018 [4] Gopalakrishnan Meena at al., PoF, 2024
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Benchmarking LuGo for QLSA circuits

» Benchmark on QLSA to calculate tridiagnal Toeplitz linear systems
» Analysis on Frontier & Perlmutter supercomputers with a two-hour time limitation

« LuGo achieves reduction for: (1) time to generate and run circuits, and (2) circuit depth
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LuGo-based HHL enables scaling to larger flow problems

Results using classical simulators
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LuGo-based HHL solver better scales on superconducting &
trapped-ion quantum hardware
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Due to the limitation of HHL algorithms, Variational Quantum
Linear solver are considered as an alternative.
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* Reduced circuit si cost function evaluations

« The VQLS algorithm attempt to minimize the result of 1 — (b|A|x(8))* to estimate the closeness of Ax(0) is
to the vector |b).

« The classical side will assign a set of weight to the quantum computer to estimate the cost.

%OAK RIDGE [1] Bravo-Prieto, C. et, al. Quantum, 2020.
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VQLS for generalized matrices — LCU decomposition

« To enable the generalized matrix input for VQLS, we use Linear Combination of Unitaries (LCU) decomposition.
* LCU decompose an arbitrary matrix to a combination of Pauli Matrices ¥ ¢;U;
* ¢; refers to the coefficient;

* Uj refers to the corresponding Pauli-matrices.
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« For the VQLS algorithm, the matrix is initialized by multiple cost circuits with each circuit containing a set of
Pauli-gates.

« The cost function is then obtained by adding up cost of all circuits multiply with corresponded coefficients.

%OAK RIDGE
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VQLS for generalized matrices

« We constructed relatively simple matrices to test the scalability of the algorithm with LCU decomposition.
» For simplicity, we constructed the matrix with only three Pauli terms

« with coefficient of 1, 0.2, 0.2 corresponds to Pauli-Z, and two Pauli-X terms.

1 0 04 O
. _ o 1 o0 o L :
The matrix is now: 04 0 1 0 for 2-qubit matrix.
0O 0 0 1

« The vectorinputis [1,1,...,1]T.
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Validating the VQLS implementation on a tridiagonal Toeplitz system with matrix size 4 x 4.
(Top) The convergence of the optimization process and (bottom) the comparison of
probabilities of the states from the classical and VQLS methods.
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Scaling simple matrix

For a matrix decomposition with a simple LCU decomposition method, we successfully scale the algorithm
to matrix size of 28x28 with high fidelity over 99.9% on quantum simulator.
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Effect of problem size on fidelity demonstrated for a tridiagonal Toeplitz
system.
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Complexity involved with CFD matrices

+ Not with dimension of 2¥x2¥ — pad to the nearest square matrix of 2¥x2",

» Large condition numbers — VQLS can handle input matrix with ill-conditioned matrices where HHL cannot.

* Anincreased number of LCU terms for complex — more quantum circuits required for each cost computation.
» Post-quantum process — from quantum state to actual state.

« Complex result state |x) that is difficult to express — more complex quantum ansatz for expressibility.
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Comparing the coefficients of the LCU decomposition of the system
matrices for the tridiagonal Toeplitz system and Hele—Shaw flow on the
% OAK RIDGE .
National Laboratory complex plane. Both problems are chosen to have a system size of 24



Challenges

VQLs for
generalized
matrices

Optimizer needed

%OAK RIDGE

National Laboratory

Scaling simple
matrix

Large # circuits

Complexity
involved with CFD
matrices

Distributed
framework

Ansatz complexity

Batched circuit
submission




Ansatz complexity

» Due to the complexity of real-world problems with the possible solution |x), ansatz with low depth and
complexity might fail to converge.

« We are considering multiple different types of quantum ansatz for efficient convergence and high fidelity.
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Ansatz expressibility, entanglement, and number of parameters explanations, and preliminary results obtained of the performance achieved
on tridiagnal Toeplitz and Hele-Shaw experiments conducted using different quantum ansatz. Comparing effect of various ansatz on the
fidelity for the tridiagonal Toeplitz system and Hele-Shaw flow. Both problems are chosen to have a system size of 8.
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Cost function

Optimizer needed and large number of circuits

« To minimize the cost function with less optimization steps, we used gradient and gradient-free optimizers to
compare the number of steps and minimum cost function achieved.

» Currently, gradient-based optimizer ‘Adam’ and ‘NAdam’ optimizer in Pytorch outperformed gradient-free
optimizer with lowest steps and minimum cost value obtained.

* Due to many steps and decomposed Pauli terms because of LCU decomposition, large number of circuits are
required to perform the optimization algorithm.
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Learning curve by selecting different optimizer for a sample LCU decomposition matrix input using gradient and gradient-free approach.
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Distributed framework

To cope with HPC-Quantum stack and release the pressure of large amount of quantum circuits for VQLS, we
embedded QFW framework to enable Quantum-HPC

Hybrid HPCIQC Application (s)
H Quantum Step Classical Step
Time Quantum Step Classical Step

Quantum Reservation Classical Reservation
System

System
App 1 App N
(a) Simultaneous Allocation Creditbound  Credit bound HPC Queue
Queue Queue
. — o
Quantum Step Classical Step a a a
Task Scheduling Job Scheduling
| Time [>
(b) Interleaved Allocation Quantum Resources HPC Nodes

Allocation strategies to support hybrid QC/HPC applications.

Illustration of hybrid QC/HPC application resource management.
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Batched circuit submission

« Toreduce the interaction between classical and quantum computer interaction and maximize the quantum
hardware qubit capacity, we enabled batched circuit input for a quantum computer/simulator.
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Batched VQLS circuit a batched submission of three circuits. Three cost values will be return by one execution
%OAK RIDGE

National Laboratory



Outline

Conclusion
and Future

aM=x <X
Works I ~ M LN NVIDIA

%OAK RIDGE

National Laboratory




Conclusion and Future Works

e In the future, we intend to

« perform more detailed analysis of quantum ansatz with respect to expressibility, weights and
entanglement capability;

Reduce the total number of circuits required for VQLS.
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